Bilinear Fourier multipliers

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilinear multipliers and transference

(defined for Schwarzt test functions f and g in ) extends to a bounded bilinear operator from Lp1 (R)×Lp2 (R) into Lp3 (R). The theory of these multipliers has been tremendously developed after the results proved by Lacey and Thiele (see [16, 18, 17]) which establish that m(ξ,ν) = sign(ξ +αν) is a (p1, p2)-multiplier for each triple (p1, p2, p3) such that 1 < p1, p2 ≤∞, p3 > 2/3, and each α∈R \...

متن کامل

Bilinear Fourier integral operator and its boundedness

We consider the bilinear Fourier integral operatorS(f, g)(x) =ZRdZRdei1(x,)ei2(x,)(x, , ) ˆ f()ˆg()d d,on modulation spaces. Our aim is to indicate this operator is well defined onS(Rd) and shall show the relationship between the bilinear operator and BFIO onmodulation spaces.

متن کامل

Bilinear Fourier Integral Operators

We study the boundedness of bilinear Fourier integral operators on products of Lebesgue spaces. These operators are obtained from the class of bilinear pseudodifferential operators of Coifman and Meyer via the introduction of an oscillatory factor containing a real-valued phase of five variables Φ(x, y1, y2, ξ1, ξ2) which is jointly homogeneous in the phase variables (ξ1, ξ2). For symbols of or...

متن کامل

Bilinear Factorization via Augmented Lagrange Multipliers

This paper presents a unified approach to solve different bilinear factorization problems in Computer Vision in the presence of missing data in the measurements. The problem is formulated as a constrained optimization problem where one of the factors is constrained to lie on a specific manifold. To achieve this, we introduce an equivalent reformulation of the bilinear factorization problem. Thi...

متن کامل

Notes on the Spaces of Bilinear Multipliers

A locally integrable function m(ξ, η) defined on R × R is said to be a bilinear multiplier on R of type (p1, p2, p3) if Bm(f, g)(x) = Z

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tohoku Mathematical Journal

سال: 1983

ISSN: 0040-8735

DOI: 10.2748/tmj/1178228950